Niche divergence facilitated by fine‐scale ecological partitioning in a recent cichlid fish adaptive radiation
نویسندگان
چکیده
Ecomorphological differentiation is a key feature of adaptive radiations, with a general trend for specialization and niche expansion following divergence. Ecological opportunity afforded by invasion of a new habitat is thought to act as an ecological release, facilitating divergence, and speciation. Here, we investigate trophic adaptive morphology and ecology of an endemic clade of oreochromine cichlid fishes (Alcolapia) that radiated along a herbivorous trophic axis following colonization of an isolated lacustrine environment, and demonstrate phenotype-environment correlation. Ecological and morphological divergence of the Alcolapia species flock are examined in a phylogenomic context, to infer ecological niche occupation within the radiation. Species divergence is observed in both ecology and morphology, supporting the importance of ecological speciation within the radiation. Comparison with an outgroup taxon reveals large-scale ecomorphological divergence but shallow genomic differentiation within the Alcolapia adaptive radiation. Ancestral morphological reconstruction suggests lake colonization by a generalist oreochromine phenotype that diverged in Lake Natron to varied herbivorous morphologies akin to specialist herbivores in Lakes Tanganyika and Malawi.
منابع مشابه
Crater lake cichlids individually specialize along the benthic–limnetic axis
A common pattern of adaptive diversification in freshwater fishes is the repeated evolution of elongated open water (limnetic) species and high-bodied shore (benthic) species from generalist ancestors. Studies on phenotype-diet correlations have suggested that population-wide individual specialization occurs at an early evolutionary and ecological stage of divergence and niche partitioning. Thi...
متن کاملOn the Measurement of Ecological Novelty: Scale-Eating Pupfish Are Separated by 168 my from Other Scale-Eating Fishes
The colonization of new adaptive zones is widely recognized as one of the hallmarks of adaptive radiation. However, the adoption of novel resources during this process is rarely distinguished from phenotypic change because morphology is a common proxy for ecology. How can we quantify ecological novelty independent of phenotype? Our study is split into two parts: we first document a remarkable e...
متن کاملCraniofacial divergence and ongoing adaptation via the hedgehog pathway.
Adaptive variation in craniofacial structure contributes to resource specialization and speciation, but the genetic loci that underlie craniofacial adaptation remain unknown. Here we show that alleles of the hedgehog pathway receptor Patched1 (Ptch1) gene are responsible for adaptive variation in the shape of the lower jaw both within and among genera of Lake Malawi cichlid fish. The evolutiona...
متن کاملEcological and Evolutionary Consequences of Color- and Trophic Polymorphisms in Cichlid Fishes
12 benthic-limnetic axis and most populations are also color-polymorphic. The most comprehensive project focuses on the gold/dark color polymorphism in the Midas cichlid species complex (Amphilophus citrinellus spp.). Using a comparative approach that bases on extensive field collections of Midas cichlids, a substantial degree of ecological differentiation between color morphs is revealed. The ...
متن کاملCommunication and speciation
Groups of organisms that have diversified to produce species adapted to a variety of ecological niches have attracted increasing attention in recent years. A widely held view is that such adaptive radiation is triggered by the availability of under-exploited resources or the absence of predators, as may occur after colonization of an island or a mass extinction. Such ecological opportunity allo...
متن کامل